Determination of the $\mathrm{Sp}(2 \mathrm{~d}, \mathrm{R})$ generator matrix elements through a boson mapping

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1984 J. Phys. A: Math. Gen. 17 L405
(http://iopscience.iop.org/0305-4470/17/8/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 08:33

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Determination of the $\operatorname{Sp}(2 d, R)$ generator matrix elements through a boson mapping

J Deenen and C Quesne \dagger
Physique Théorique et Mathématique CP 229, Université Libre de Bruxelles, Bd du Triomphe, B 1050 Brussels, Belgium

Received 19 March 1984

Abstract

For the discrete series irreducible representations $\left\langle(\lambda+n / 2)^{d}\right\rangle$ of $\operatorname{Sp}(2 d, R)$, the determination of the $\mathrm{Sp}(2 d, R)$ generator matrix elements in an $\mathrm{Sp}(2 d, R) \supset \mathrm{U}(d)$ basis is reduced to the much simpler calculation of boson operator matrix elements between $\mathrm{U}(\nu) \supset \mathrm{U}(d)$ boson states, where $\nu=d(d+1) / 2$. The key of this reduction is the previously derived Holstein-Primakoff boson representation of the $\operatorname{Sp}(2 d, R)$ generators. As an illustration, the case of $\operatorname{Sp}(6, R)$ is worked out in detail.

During the last few years, the real symplectic group $\operatorname{Sp}(2 d, R)$ has played an everincreasing role in physical applications. Its importance is largely due to the fact that it is the main component of the d-dimensional harmonic oscillator dynamical group (Moshinsky and Quesne 1971, Wybourne 1974). Interest for the group $\operatorname{Sp}(6, R)$ has also arisen from its appearance as the dynamical group of a microscopic nuclear collective model (Rosensteel and Rowe 1980, Vasilevskii et al 1980, Castaños et al 1982, Deenen and Quesne 1982). The $\operatorname{Sp}(2 d, R)$ irreducible representations (irreps) encountered in all these physical applications are positive discrete series (Rosensteel and Rowe 1977, Klimyk 1983), characterised by their lowest weight $\left\langle\lambda_{d}+n / 2, \ldots, \lambda_{1}+\right.$ $n / 2\rangle$, where $\left[\lambda_{1} \lambda_{2} \ldots \lambda_{d}\right]$ is a partition, and n is an integer greater than or equal to $2 d$.

For practical purposes, it is important to determine for such irreps the matrix elements of the $\mathrm{Sp}(2 d, R)$ generators in an $\mathrm{Sp}(2 d, R) \supset \mathrm{U}(d)$ basis. In the case of $\operatorname{Sp}(6, R)$, some methods are available to calculate these matrix elements; they are based upon either recursion relations (Rosensteel 1980), or generating function techniques (Vasilevskii et al 1980). It was however recently realised that for some irreps simple analytic formulae can be obtained, thereby considerably easing the matrix element calculation for such irreps (Castaños et al 1984).

The purpose of the present letter is to show that for the irreps $\left\langle(\lambda+n / 2)^{d}\right\rangle$, corresponding to $\lambda_{1}=\lambda_{2}=\ldots=\lambda_{d}=\lambda$, the determination of the $\operatorname{Sp}(2 d, R)$ generator matrix elements in an $\mathrm{Sp}(2 d, R) \supset \mathrm{U}(d)$ basis can be reduced to the much simpler calculation of boson operator matrix elements between boson states classified according to irreps of the group chain $\mathrm{U}(\nu) \supset \mathrm{U}(d)$, where $\nu=d(d+1) / 2$. The key of this reduction is the Holstein-Primakoff (1940) boson representation of the $\operatorname{Sp}(2 d, R)$ generators, recently derived by the present authors (Deenen and Quesne 1982).

As is well known (Moshinsky and Quesne 1971), the $\operatorname{Sp}(2 d, R)$ generators can be realised in terms of $d n$ boson creation operators $\eta_{1 s}, i=1, \ldots, d, s=1, \ldots, n$, and the

[^0]corresponding annihilation operators $\xi_{i s}=\left(\eta_{i s}\right)^{+}$, as $D_{i j}^{+}=D_{j i}^{+}=\sum_{s=1}^{n} \eta_{i s} \eta_{j s}, D_{i j}=D_{j}=$ $\sum_{s=1}^{n} \xi_{i s} \xi_{j s}$, and $E_{i j}=\sum_{s=1}^{n} \eta_{i s} \xi_{j s}+(n / 2) \delta_{i j}$, where $i, j=1, \ldots, d$. The operators $E_{i j}$ generate the maximal compact subgroup $\mathrm{U}(d)$ of $\mathrm{Sp}(2 d, R)$, and their commutators with the operators $D_{k l}^{+}$are given by
\[

$$
\begin{equation*}
\left[E_{i j}, D_{k l}^{+}\right]=\delta_{j k} D_{i l}^{+}+\delta_{j l} D_{i k}^{+} . \tag{1}
\end{equation*}
$$

\]

A basis of the irrep $\left\langle(\lambda+n / 2)^{d}\right\rangle$ representation space can be built from the lowest weight state $|\lambda\rangle$ by applying polynomial functions in the $D_{i j}^{+}$generators. By definition, $|\lambda\rangle$ satisfies the following equations

$$
\begin{equation*}
D_{i j}|\lambda\rangle=0, \quad E_{i j}|\lambda\rangle=\delta_{i j}(\lambda+n / 2)|\lambda\rangle, \tag{2}
\end{equation*}
$$

from which it results that it is the single state of the $\mathrm{U}(d)$ irrep $\left[(\lambda+n / 2)^{d}\right]$ representation space. Polynomial functions $P_{\left[h_{1 .}, h_{d]}(h)\right.}\left(D_{y}^{+}\right)$, characterised by a definite $U(d)$ irrep [$h_{1} \ldots h_{d}$], and a row index $(h) \dagger$, can be easily constructed for any even integer values of h_{1}, \ldots, h_{d} (Deenen and Quesne 1982). The states

$$
\begin{equation*}
\left|\lambda ;\left[h_{1} \ldots h_{d}\right](h)\right\rangle=A_{h_{1} \ldots h_{d}} P_{\left[h_{1} \ldots h_{d} /(h)\right.}\left(D_{i j}^{+}\right)|\lambda\rangle \tag{3}
\end{equation*}
$$

are then basis states of the $\mathrm{U}(d)$ irrep $\left[h_{1}+\lambda+n / 2, \ldots, h_{d}+\lambda+n / 2\right]$ representation space. Since this irrep appears with multiplicity one in the reduction of $\left\langle(\lambda+n / 2)^{d}\right\rangle$ into $\mathrm{U}(d)$ irreps, the states (3) corresponding to all positive even integer values of h_{1}, \ldots, h_{d} acutally form an $\operatorname{Sp}(2 d, R) \supset \mathrm{U}(d)$ basis. In equation (3), $A_{h_{1} \ldots h_{d}}$ is the normalisation coefficient of the highest weight state. Its explicit value (chosen as real) could in principle be determined from the commutaion relations of the $\operatorname{Sp}(2 d, R)$ generators. We shall however use a much simpler procedure to calculate it.

Let us now consider $\nu=d(d+1) / 2$ independent boson creation and annihilation operators $a_{y j}^{+}=a_{j}^{+}$and $a_{y j}=a_{j,}, i, j=1, \ldots, d$, or the associated non-normalised operators $\bar{a}_{i j}^{+}=\bar{a}_{j 1}^{+}=\left(1+\delta_{y j}\right)^{1 / 2} a_{i j}^{+}$and $\bar{a}_{y j}=\bar{a}_{j 1}=\left(1+\delta_{i j}\right)^{1 / 2} a_{i j}$, whose commutation relations are given by (Deenen and Quesne 1982)

$$
\begin{equation*}
\left[\bar{a}_{i j}, \bar{a}_{k l}^{+}\right]=\delta_{k k} \delta_{j l}+\delta_{l l} \delta_{k k} . \tag{4}
\end{equation*}
$$

The two sets of operators $\mathfrak{C}_{i, k l}=a_{i j}^{+} a_{k l}$ and $\mathscr{C}_{i j}=\Sigma_{k} \bar{a}_{i k}^{+} \bar{a}_{k j}$ are respectively the generators of a $\mathrm{U}(\nu)$ group and of its $\mathrm{U}(d)$ subgroup.
N boson states belong to an irrep [N] of $\mathrm{U}(\nu)$, and can be further characterised by a given irrep $\left[h_{1} \ldots h_{d}\right]$ of $\mathrm{U}(d)$, and a row index (h). Only the irreps [$h_{1} \ldots h_{d}$], where h_{1}, \ldots, h_{d} are even integers and satisfy the relation $\Sigma_{1} h_{t}=2 N$, are contained in [N], and their multiplicity is equal to one. The commutation relation

$$
\begin{equation*}
\left[\mathcal{C}_{t,}, \bar{a}_{k l}^{+}\right]=\delta_{j k} \bar{a}_{t l}^{+}+\delta_{\jmath l} \bar{a}_{t k}^{+} \tag{5}
\end{equation*}
$$

shows that the boson operators $\bar{a}_{k l}^{+}$have the same transformation properties with respect to the $\mathrm{U}(d)$ subgroup of $\mathrm{U}(\nu)$ as the generators $D_{k l}^{+}$with respect to the $\mathrm{U}(d)$ subgroup of $\operatorname{Sp}(2 d, R)$. The N boson states may therefore be written as

$$
\begin{equation*}
\left.\left.\mid\left[h_{1} \ldots h_{d}\right](h)\right)=B_{h_{1} \ldots h_{d}} P_{\left[h_{1} \ldots h_{d}(h)\right.}\left(\bar{a}_{i j}^{+}\right) \mid 0\right), \tag{6}
\end{equation*}
$$

where $\mid 0)$ is the boson vacuum state, and $P_{\left[h_{1} \ldots h_{d}(h)\right.}\left(\bar{a}_{i j}^{+}\right)$is the same polynomial function as $P_{\left[h_{1} \ldots h_{d}\right] h_{h}(}\left(D_{i j}^{+}\right)$, but with $D_{i j}^{+}$replaced by $\bar{a}_{i j}^{+}$. The normalisation coefficient $B_{h_{1} \ldots h_{d}}$ in

[^1]equation (6) is however different from that of equation (3), because its value (chosen as real) results from the commutation relations (4) of the boson operators.

It is obvious that there is a one-to-one correspondence between the $\mathrm{Sp}(2 d, R) \supset \mathrm{U}(d)$ basis states (3) and the $\mathrm{U}(\nu) \supset \mathrm{U}(d)$ boson states (6). The mapping of the former onto the latter, obtained by equating them, leads to a boson representation of the $\operatorname{Sp}(2 d, R) \supset$ $\mathrm{U}(d)$ basis states and of the $\mathrm{Sp}(2 d, R)$ generators (Deenen and Quesne 1982), which is of Holstein-Primakoff type (1940). This mapping may be written as

$$
\begin{equation*}
\left.P_{\left[h_{1} \ldots h_{d}\right](h)}\left(D_{i j}^{+}\right)|\lambda\rangle=u_{h_{1} \ldots h_{d}} P_{\left[h_{1} \ldots h_{d}\right](h)}\left(\bar{a}_{i j}^{+}\right) \mid 0\right) \tag{7}
\end{equation*}
$$

where $u_{h_{1} \ldots h_{d}}$ is given by

$$
\begin{equation*}
u_{h_{1} \ldots h_{d}}=\left[A_{h_{1} \ldots h_{d}}\right]^{-1} B_{h_{1} \ldots h_{d}} \tag{8}
\end{equation*}
$$

Let us introduce an operator U, defined by its action on the boson states as follows

$$
\begin{equation*}
\left.U\left[\left[h_{1} \ldots h_{d}\right](h)\right)=u_{h_{1} \ldots h_{d}}\left[h_{1} \ldots h_{d}\right](h)\right) \tag{9}
\end{equation*}
$$

This operator is clearly Hermitian and scalar under $U(d)$, but it is not unitary. In terms of it, equation (7) becomes

$$
\begin{equation*}
\left.P_{\left[h_{1} \ldots h_{d}(h)\right.}\left(D_{!y}^{+}\right)|\lambda\rangle=U P_{\left[h_{1} \ldots h_{d]}(h)\right.}\left(\bar{a}_{1!}^{+}\right) \mid 0\right), \tag{10}
\end{equation*}
$$

and the $\operatorname{Sp}(2 d, R)$ generators can be expressed as
$D_{i j}^{+}=U \bar{a}_{i j}^{+} U^{-1}, \quad D_{i j}=U^{-1} \bar{a}_{i j} U, \quad E_{i j}=\left(\mathfrak{C}_{i j}+(\lambda+n / 2) \delta_{i j}\right.$.
Equations (11a) and (11c) are a direct consequence of equation (10), while (11b) is the Hermitian conjugate of (11a).

The operator U, or more precisely its eigenvalues $u_{h_{1} \ldots h_{d}}$, can be directly determined from equation (11) and the commutation relations of the $\operatorname{Sp}(2 d, R)$ generators. It was shown elsewhere (Deenen and Quesne 1982) that the equations to be solved can be written as

$$
\begin{equation*}
U^{2} \bar{a}_{l j}^{+} U^{-2}=\sum_{k}\left[\Upsilon_{i k}+(2 \lambda+n-d-1) \delta_{i k}\right] \bar{a}_{k j}^{+}, \tag{12}
\end{equation*}
$$

and that their solution is given by

$$
\begin{equation*}
u_{h_{1} \ldots h_{d}}=\left(\prod_{i=1}^{d} \frac{\left(h_{i}+2 \lambda+n-i-1\right)!!}{(2 \lambda+n-i-1)!!}\right)^{1 / 2} \tag{13}
\end{equation*}
$$

when choosing $u_{0 \ldots 0}=1$, and $u_{h_{1} \ldots h_{d}}$ positive.
It is now straightforward to prove the announced relation between matrix elements of operators in the $\mathrm{Sp}(2 d, R) \supset \mathrm{U}(d)$ and $\mathrm{U}(\nu) \supset \mathrm{U}(d)$ basis. The only $\mathrm{Sp}(2 d, R)$ generators, whose matrix elements are required, are the $D_{i j}^{+}$operators. The matrix elements of $D_{i j}$ can indeed be determined from them by using the Hermiticity properties of the operators, while those of $E_{i j}$ are well known since the $E_{i j}$ are the generators of a U(d) group (Gel'fand and Tseitlin 1950, Baird and Biedenharn 1963). From equations (1) and (5), it is obvious that the operators $D_{i j}^{+}$and $\bar{a}_{i j}^{+}$are the components of [20 $\ldots 0$] irreducible tensors with respect to the $U(d)$ subgroups of $\operatorname{Sp}(2 d, R)$ and $U(\nu)$ respectively. Such irreducible tensors may only induce transitions from an irrep
[$h_{1} \ldots h_{i} \ldots h_{d}$] to the irreps $\left[h_{1} \ldots h_{i}+2 \ldots h_{d}\right]$, where $i=1, \ldots, d$, and no multiplicity index is required in their matrix elements. From equation (11a), the ratio of the reduced

$$
\begin{align*}
& \left\langle\lambda ;\left[h_{1} \ldots h_{i}+2 \ldots h_{d}\right]\left\|D^{+}\right\| \lambda ;\left[h_{1} \ldots h_{1} \ldots h_{d}\right]\right\rangle \\
& \tag{14}\\
& =\left(\prod_{i=1}^{d}\left(h_{i}+2 \lambda+n-i+1\right)\right)^{1 / 2}\left(\left[h_{1} \ldots h_{i}+2 \ldots h_{d}\right]\left\|\bar{a}^{+}\right\|\left[h_{1} \ldots h_{i} \ldots h_{d}\right]\right) .
\end{align*}
$$

As an additional point, we also note from equations (8) and (13) that the normalisation coefficient $A_{h_{1} \ldots h_{d}}$ of the $\operatorname{Sp}(2 d, R) \supset \mathrm{U}(d)$ basis states can be determined from the normalisation coefficient $B_{h_{1} \ldots h_{d}}$ of the $\mathrm{U}(\nu) \supset \mathrm{U}(d)$ ones as follows

$$
\begin{equation*}
A_{h_{1} \ldots h_{d}}=\left(\prod_{i=1}^{d} \frac{(2 \lambda+n-i-1)!!}{\left(h_{i}+2 \lambda+n-i-1\right)!!}\right)^{1 / 2} B_{h_{1} \ldots h_{d^{\prime}}} \tag{15}
\end{equation*}
$$

To illustrate our procedure, let us consider the case of the $\operatorname{Sp}(6, R)$ generators. In the microscopic nuclear collective model mentioned in the introduction, the irreps $\left\langle(\lambda+n / 2)^{3}\right\rangle$ of $\operatorname{Sp}(6, R)$ are encountered in closed-shell nuclei. For such irreps, equation (14) establishes a relation between the matrix elements of the $\operatorname{Sp}(6, R)$ generators $D_{i j}^{+}$ in an $\operatorname{Sp}(6, R) \supset \mathrm{U}(3)$ basis and those of boson operators between boson states classified according to $\mathrm{U}(6) \supset \mathrm{U}(3)$. Analytic formulae being available for the latter (Quesne 1981), we obtain from equation (14) the following results

$$
\begin{align*}
& \left\langle\lambda ;\left[h_{1}+2, h_{2}, h_{3}\right]\left\|D^{+}\right\| \lambda ;\left[h_{1} h_{2} h_{3}\right]\right\rangle \\
& \quad=\left(\frac{\left(h_{1}+4\right)\left(h_{1}+2 \lambda+n\right)\left(h_{1}-h_{2}+2\right)\left(h_{1}-h_{3}+3\right)}{\left(h_{1}-h_{2}+3\right)\left(h_{1}-h_{3}+4\right)}\right)^{1 / 2}, \\
& \left\langle\lambda ;\left[h_{1}, h_{2}+2, h_{3}\right]\left\|D^{+}\right\| \lambda ;\left[h_{1} h_{2} h_{3}\right]\right\rangle \\
& \quad=\left(\frac{\left(h_{2}+3\right)\left(h_{2}+2 \lambda+n-1\right)\left(h_{1}-h_{2}\right)\left(h_{2}-h_{3}+2\right)}{\left(h_{1}-h_{2}-1\right)\left(h_{2}-h_{3}+3\right)}\right)^{1 / 2}, \tag{16}\\
& \left\langle\lambda ;\left[h_{1}, h_{2}, h_{3}+2\right]\left\|D^{+}\right\| \lambda ;\left[h_{1} h_{2} h_{3}\right]\right\rangle \\
& \quad=\left(\frac{\left(h_{3}+2\right)\left(h_{3}+2 \lambda+n-2\right)\left(h_{1}-h_{3}+1\right)\left(h_{2}-h_{3}\right)}{\left(h_{1}-h_{3}\right)\left(h_{2}-h_{3}-1\right)}\right)^{1 / 2} .
\end{align*}
$$

Proceeding in the same way for the normalisation coefficient of the $\mathrm{Sp}(6, R) \supset \mathrm{U}(3)$ basis states, from the corresponding result for the $U(6) \supset U(3)$ boson states (Quesne 1981) and equation (15) we obtain the relation

$$
\begin{align*}
A_{h_{1} h_{2} h_{3}}=\left[\left(\frac{1}{2} h_{2}\right)\right. & !\left(\frac{1}{2}\left(h_{1}-h_{3}\right)+1\right)!\left(h_{1}-h_{2}+1\right)!!\left(h_{2}-h_{3}+1\right)!!(2 \lambda+n-2)!!(2 \lambda+n-3)!! \\
& \times(2 \lambda+n-4)!!]^{1 / 2}\left[\left(\frac{1}{2} h_{1}+1\right)!\left(h_{2}+1\right)!\left(\frac{1}{2}\left(h_{2}-h_{3}\right)\right)!\left(h_{1}-h_{2}\right)!!\right. \\
& \times\left(h_{1}-h_{3}+1\right)!!h_{3}!!\left(h_{1}+2 \lambda+n-2\right)!! \\
& \left.\times\left(h_{2}+2 \lambda+n-3\right)!!\left(h_{3}+n+2 \lambda-4\right)!!\right]^{-1 / 2} . \tag{17}
\end{align*}
$$

Both equations (16) and (17) agree with the results obtained by Castaños et al (1984) but after some rather lengthy calculations.

References

Baird G E and Biedenharn L C 1963 J. Math. Phys. 41449
Castaños O, Chacon E, Frank A, Hess P and Moshinsky M 1982 J. Math. Phys. 232537
Castaños O, Chacon E and Moshinsky M 1984 J. Math. Phys. In press
Deenen J and Quesne C 1982 J. Math. Phys. 23 878, 2004
Gel'fand I M and Tseitlin M L 1950 Dokl. Akad. Nauk 71825
Holstein T and Primakoff H 1940 Phys. Rev. 581098
Klimyk A U 1983 J, Math. Phys. 24224
Moshinsky M and Quesne C 1971 J. Math. Phys. 121772
Quesne C 1981 J. Math. Phys. 221482
Rosensteel G 1980 J. Math. Phys. 21924
Rosensteel G and Rowe D J 1977 Int. J. Theor. Phys. 1663

- 1980 Ann. Phys, NY 126343

Vasilevskii V S, Smirnov Yu F and Filippov G F 1980 Sov. J. Nucl. Phys. 32510
Wybourne B G 1974 Classical Groups for Physicists (New York: Wiley)

[^0]: \dagger Maître de recherches FNRS.

[^1]: + Since we only deal with reduced matrix elements of operators, it does not matter whether (h) denotes a Gel'fand pattern associated with the canonical chain of $U(d)$ (Gel'fand and Tseitlin 1950, Baird and Biedenharn 1963), or another set of quantum numbers corresponding to a non-canonical chain.

