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LE'ITER TO THE EDITOR 

Determination of the Sp(2d, R )  generator matrix elements 
through a boson mapping 

J Deenen and C Quesne: 
Physique Theorique et MathCmatique C P  229, UniversitC Libre de Bruxelles, Bd du 
Triomphe, B I050 Brussels, Belgium 

Received 19 March 1984 

Abstract. For the discrete series irreducible representations ((A +n /2)d)  of Sp(2d, R ) ,  the 
determination of the Sp(2d, R )  generator matrix elements in an Sp(Zd, R )  2 U(d) basis is 
reduced to the much simpler calculation of boson operator matrix elements between 
U( U) 2 U(d) boson states, where v = d ( d  + l)/2. The key of this reduction is the previously 
derived Holstein-Primakoff boson representation of the Sp(2d, R )  generators. As an 
illustration, the case of Sp(6, R )  is worked out in detail. 

During the last few years, the real symplectic group Sp(2d, R )  has played an ever- 
increasing role in physical applications. Its importance is largely due to the fact that 
it is the main component of the d-dimensional harmonic oscillator dynamical group 
(Moshinsky and Quesne 1971, Wybourne 1974). Interest for the group Sp(6, R )  has 
also arisen from its appearance as the dynamical group of a microscopic nuclear 
collective model (Rosensteel and Rowe 1980, Vasilevskii er al 1980, Castafios er al 
1982, Deenen and Quesne 1982). The Sp(2d, R )  irreducible representations (irreps) 
encountered in all these physical applications are positive discrete series (Rosensteel 
and Rowe 1977, Klimyk 1983), characterised by their lowest weight (Ad + n / 2 , .  . . , A ,  + 
n/2), where [ A , A z .  . . A d ]  is a partition, and n is an integer greater than or equal to 2d. 

For practical purposes, it is important to determine for such irreps the matrix 
elements of the Sp(2d, R )  generators in an Sp(2d, R ) 3 U ( d )  basis. In the case of 
Sp(6, R ) ,  some methods are available to calculate these matrix elements; they are based 
upon either recursion relations (Rosensteel 1980), or generating function techniques 
(Vasilevskii et a1 1980). It was however recently realised that for some irreps simple 
analytic formulae can be obtained, thereby considerably easing the matrix element 
calculation for such irreps (Castafios et a1 1984). 

The purpose of the present letter is to show that for the irreps ((A + ~ / 2 ) ~ ) ,  
corresponding to A ,  = A 2  = . . . = Ad = A, the determination of the Sp(2d, R )  generator 
matrix elements in an Sp(2d, R )  3 U(d) basis can be reduced to the much simpler 
calculation of boson operator matrix elements between boson states classified according 
to irreps of the group chain U( v) 3 U(d), where v = d ( d  + 1)/2. The key of this reduction 
is the Holstein-Primakoff (1940) boson representation of the Sp(2d, R )  generators, 
recently derived by the present authors (Deenen and Quesne 1982). 

As is well known (Moshinsky and Quesne 1971), the Sp(2d, R )  generators can be 
realised in terms of dn boson creation operators vgS, i = 1 , .  . . , d, s = 1, .  . . , n, and the 
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corresponding annihilation operators = (v,,)+, as D: = D; = XT= I v,,vJs, D, = DJI = 
Cy=, &&, and E, = ~,,& +(n/2)Sl,, where i, j = I ,  . . . , d. The operators E,, generate 
the maximal compact subgroup U(d) of Sp(2d, R ) ,  and their commutators with the 
operators Dll are given by 

= ‘ J k D ;  +sJ/Di‘ (1) 

A basis of the irrep ((A + r1 /2)~)  representation space can be built from the lowest 
weight state I A )  by applying polynomial functions in the 0: generators. By definition, 
IAf  satisfies the following equations 

D,lA) = 0, E l , l h ) =  +n/2)lh)7 (2) 

from which it results that it is the single state of the U(d) irrep [(A + r1 /2)~]  representation 
space. Polynomial functions PLhl h I l ] ( h ) (  D;), characterised by a definite U(d)  irrep 
[ h ,  . . . hd], and a row index ( h ) ? ,  can be easily constructed for any even integer values 
of h , ,  . . . , hd (Deenen and  Quesne 1982). The states 

I A  ; IhI . . . hdl(h)) = A h ,  h t I P [ h ,  h c l ] ( h ) ( D ; ) l A )  (3 ) 
are then basis states of the U(d) irrep [ h ,  + A  + n / 2 , .  . . , hd + A  +n /2 ]  representation 
space. Since this irrep appears with multiplicity one in the reduction of ((A + ~ / 2 ) ~ )  
into U(d) irreps, the states (3) corresponding to all positive even integer values of 
h , ,  . . . , hd acutally form an Sp(24  R ) 2  U(d) basis. In  equation (3), Ah, ,>, is the 
normalisation coefficient of the highest weight state. Its explicit value (chosen as real) 
could in principle be determined from the commutaion relations of the Sp(2d, R )  
generators. We shall however use a much simpler procedure to calculate it. 

Let us now consider Y = d ( d  + 1)/2 independent boson creation and annihilation 
operators U ;  = U; and a, = uJr, i, j = 1, .  . . , d, or the associated non-normalised 
operators 6:  = 6; = (1 + S,)1’2a; and 6, = LiJ, = (1 + 6,,)”2a,, whose commutation rela- 
tions are given by (Deenen and  Quesne 1982) 

(4) 
The two sets of operators = a l a k l  and ( I ,J  = X k  6 ~ 6 ,  are respectively the genera- 
tors of a U(v) group and of its U(d) subgroup. 

N boson states belong to an  irrep [NI of U( Y), and can be further characterised 
by a given irrep [ h ,  . . . h d ]  of U(d), and a row index ( h ) .  Only the irreps [ h ,  . . . hd], 
where h , ,  . . . , hd are even integers and satisfy the relation C, h, = 2N, are contained in 
[NI ,  and their multiplicity is equal to one. The commutation relation 

[a,, 6,;1 = &S,/ + 6,/6,k. 

[(I,, 6;/]=6,,6;+6,/6:k ( 5 )  

shows that the boson operators 6k; have the same transformation properties with 
respect to the U(d) subgroup of U(v)  as the generators D:, with respect to the U(d) 
subgroup of Sp(Zd, R ) .  The N boson states may therefore be written as 

(6 )  

where IO) is the boson vacuum state, and  Prh, h < , ] ( h ) ( i i ; )  is the same polynomial function 
as P[h, h , l ] ( h ) ( D : ) ,  but with 0: replaced by iil. The normalisation coefficient B h ,  ,,, in 

. . . hdl(h))= Bh,  h , l P [ h  h J ( h ) ( ~ l ) l o ) ,  

f Since we only deal with reduced matrix elements of operators, it does not matter whether ( h )  denotes a 
Gel’fand pattern associated with the canonical chain of U ( d )  (Gel’fand and Tseitlin 1950, Baird and 
Biedenharn 1963). or another set of quantum numbers corresponding to a non-canonical chain, 
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equation (6 )  is however different from that of equation (3), because its value (chosen 
as real) results from the commutation relations (4) of the boson operators. 

I t  is obvious that there is a one-to-one correspondence between the Sp(2d, R )  3 U(d) 
basis states (3) and the U( v) 3 U(d) boson states (6 ) .  The mapping of the former onto 
the latter, obtained by equating them, leads to a boson representation of the Sp(2d, R )  3 

U(d) basis states and of the Sp(2d, R )  generators (Deenen and Quesne 1982), which 
is of Holstein-Primakoff type (1940). This mapping may be written as 

P ~ h , . . . h , , l i h ) ( D ~ ) l A )  = u h l . . . h , P ~ h l . . . h ~ ~ ( h ) ( ~ : ) I o ) ,  ( 7 )  

Uh,...h,,  = [ A h l . . . h d l - '  Bhl...h,. (8) 

where uh,.. .h,,  is given by 

Let us  introduce an operator U, defined by its action on the boson states as follows 

This operator is clearly Hermitian and scalar under U(d),  but it is not unitary. In 
terms of it, equation (7)  becomes 

P [ h ,  h & h ) ( D ; ) l A )  = up[,, h d ] ( h ) ( a ; ) i O ) ,  (10) 

and the Sp(2d, R )  generators can be expressed as 

D;= UcilU- ' ,  D, = U-'cilU, E,, = 0, + ( A  + n/2)6,. ( 1  la, b, c )  

Equations (1 1 a)  and (1  1 c) are a direct consequence of equation ( 1  0), while ( 1  1 b)  is 
the Hermitian conjugate of (1 1 a). 

The operator U, or more precisely its eigenvalues U h ,  h,,, can be directly determined 
from equation (1 1 )  and the commutation relations of the Sp(24 R )  generators. It was 
shown elsewhere (Deenen and Quesne 1982) that the equations to be solved can be 
written as 

u 2 d ~ u - 2 = ~ [ 6 , k  +(2A + n - d  - I ) a , k ] a L ,  (12) 
k 

and that their solution is given by 

when choosing uo = I ,  and u h ,  h,, positive. 
It is now straightforward to prove the announced relation between matrix elements 

of operators in the Sp(24 R )  3 U(d) and U(v) 2 U(d) basis. The only Sp(2d, R )  
generators, whose matrix elements are required, are the 0: operators. The matrix 
elements of D,, can indeed be determined from them by using the Hermiticity properties 
of the operators, while those of E,, are well known since the E, are the generators of 
a U(d) group (Gel'fand and Tseitlin 1950, Baird and Biedenharn 1963). From equations 
(1) and (5 ) ,  it is obvious that the operators D; and a; are the components of [20. . . 01 
irreducible tensors with respect to the U(d) subgroups of Sp(2d, R )  and U(v) respec- 
tively. Such irreducible tensors may only induce transitions from an irrep 
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[ h ,  . . . h, .  . . hd] to the irreps [ h ,  . . . h, + 2 . .  . hd], where i = 1 , .  . . , d, and no multiplicity 
index is required in their matrix elements. From equation (1 1 a), the ratio of the reduced 
matrix elements of 0; and is simply given by u h ,  h , t 2  h , , / U h ,  h ,  h,,, i.e., 

( A ;  [ h ,  . . . h, + 2 . .  . hd]llD’IIA; [hi . . . h , .  . . hd]) 

(14) 

As an additional point, we also note from equations (8) and (13) that the normalisation 
coefficient Ah, hd of the Sp(Zd, R ) = I  U ( d )  basis states can be determined from the 
normalisation coefficient Bh, h,, of the U( v) =I U(d) ones as follows 

1 I / *  

d n ( h I + 2 A  + n - i + l )  ( [h i  . . . h , + 2 . . . h d ] l ) 6 + l l [ h ,  . . . h , . . . h d ] ) .  =o=, 

(2A + n - i - l ) ! !  
Ahl . . .h , ,  = ( fi Bh, . . .hd .  , = 1 ( h , + 2 A + n - i - l ) ! !  

To illustrate our procedure, let us consider the case of the Sp(6, R )  generators. In 
the microscopic nuclear collective model mentioned in the introduction, the irreps 
((A + n / q 3 )  of Sp(6, R )  are encountered in closed-shell nuclei. For such irreps, equation 
(14) establishes a relation between the matrix elements of the Sp(6, R )  generators 0: 
in an Sp(6, R )  2 U(3) basis and those of boson operators between boson states classified 
according to U(6) 2 U(3).  Analytic formulae being available for the latter (Quesne 
1981), we obtain from equation (14) the following results 

( h ,  +3)(h2 +2A + n - l)(h, - h 2 ) ( h 2 -  h, + 2 )  
( h ,  - h2 - 1)(h2- h3 + 3 )  

Proceeding in the same way for the normalisation coefficient of the Sp(6, R )  =I U(3) 
basis states, from the corresponding result for the U(6) = U(3) boson states (Quesne 
198 1) and equation ( 1  5) we obtain the relation 

A h l h , h , = [ ( $ h 2 ) ! ( { ( h l  - h3)+l)!(hl  - h 2 +  l)!!(h2-h3+ 1)!!(2A + n  -2)!!(2A + F l  -3) ! !  

X(2A +n-4)!!]’”[(fhI + l ) ! ( h , +  l)!(f(h2-h3))!(hl - h 2 ) ! !  

x ( h l - h 3 + 1 ) ! ! h 3 ! ! ( h l  +2A + n - 2 ) ! !  

x ( h 2  + 2 A  + n -3)!!(h3 + n +2A -4)!!]-”2. (17) 

Both equations (16) and (17) agree with the results obtained by Castarios er a1 
(1984) but after some rather lengthy calculations. 
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